Get your copy of the 7th Annual State of Smart Manufacturing and hear from 300+ manufacturers in this new survey report!
For a monthly digest of expert insights, data points, and tips like the ones in this article.
Many people love surprises. On birthdays, anniversaries, or holidays, they can be fun. But in manufacturing environments, not so much. Surprises here can mean missed deliveries, damaged or spoiled materials, compromised brand reputation, and even dangerous recalls.
For many years, traceability within manufacturing was plagued by the same problems encountered by any analysis. Siloed data, outdated information, human error, and other missteps meant that traceability was more like a caterpillar crawling up and down supply chains, production processes, and distribution lanes.
Because of its manual nature, many industries had little to no traceability beyond a vague category with original names such as "returns." For these companies, the cost of implementing traceability outweighed the benefits if safety and brand reputation weren't at risk. The return category was just a slow-motion quality fallout.
But for others such as pharmaceuticals, food and beverage, automotive, and aerospace, traceability was a must. The stakes were high for product safety, and the risk of not pushing manual traceability procedures made their business a high-risk venture. Mailers, spreadsheets, and manual documentation were often all that stood between them and a potential lawsuit.
IoT traceability uses technology such as sensors, scanners, and other devices to monitor product progression or condition. It uses RFID tags, barcodes, and geographic information system technology (GIS) to track every stage of a product's life. This includes raw material production, shipping, inventory, production, and distribution. For discrete goods such as automobiles or appliances, it can even allow companies to monitor conditions for service and troubleshooting.
As scanners and other devices read the location or condition of the goods, the data generated is housed in a cloud-based system that can deploy advanced analytics to deliver insights to users within the production company. Production logistics, delivery schedules, and expiry control allow manufacturers to customize and optimize their production using real-time data-driven insights.
In one example, the food and beverage industry, subject to tight compliance and regulatory control, is poised to grow from to $14.4 billion in 2029. For food and beverage and other companies needing tight traceability, end-to-end visibility for production has long been a dream. And it could deliver more profitability on top of safety and quality improvements. Specific benefits include:
By monitoring all aspects of a product's lifecycle in its journey from raw material to consumer goods, defects, spoilage, and other problems can be detected as they occur. This monitoring can eliminate the need for recalls or significantly reduce their frequency.
Supplier surprises have long been the boon of manufacturing. With RFID tags and advanced scanning, temperature, moisture, and other conditions can be detected well before receiving or even shipping materials. IoT traceability also allows for highly accurate inventory records as goods can be tracked all the way to issuance to the production floor, optimizing inventory.
Safety issues for a wide range of industries can be mitigated or eliminated with IoT traceability. For example, an ingredient for a pharmaceutical product may have one-year viability when kept between a specific temperature range. But that viability could drop to weeks or days if it exceeds that temperature. With IoT traceability, temperature sensors can confirm shelf life and prevent the finished product from reaching patients if it has been exposed to too much heat.
With the vast influx of data and end-to-end visibility from supply to final goods shipment, managers can learn where to focus on process improvements internally. This visibility is true for both production and supply chain management.
The ability to trace material and finished goods from procurement to delivery and beyond opens up an enormous opportunity. Software is available to create a smart manufacturing platform where traceability is coupled with actionable insights from every corner of a manufacturing environment. When such a platform includes MES, QMS, ERP, and SCP functionality, then it can powerfully connect devices and analyze them to deliver all the benefits discussed above.
Keep surprises to the pleasant kind in your personal life. Read more here and learn how to detect problems on your production floor before they jump out and yell "SURPRISE!" when you least expect it.